

Objectives

- Be able to consistently rate soil stability on a scale of 1-6 using the soil stability kit
- 2. Be able to explain the relationship between the kit values and erosion resistance for soils of different textures

Soil Stability Kit Use and Interpretation for Indicator 8 (Soil Surface Erosion Resistance)

- 1. Place 1/4" diameter fragment of soil on sieve in water
- 2. Observe: does it "melt"?
- 3. Wait 5 minutes
- 4. Lift out of water 5x

5. Rate on 1-6 scale

Outline

- Soil stability kit
 - design and use
 - interpretation
 - application: on-site inventory & monitoring
 - directly applicable to indicator #8
 - related to indicator #9
- Integration of soil measurements into inventory and monitoring programs

Why soil (surface) structure?

 Soil surface characteristics control capture and retention of water and nutrients

- Soil structure is correlated with:
 - erodibility
 - soil organic matter cycling
 - infiltration capacity & water and nutrient retention
 - recovery processes (e.g. soil biotic activity)

Why a field kit?

<u>RELATIONSHIP TO FIELD</u>

- Rangeland soils highly stratified, esp. surface ¼"
- Soil structure destroyed by sampling & transport.
- Level of lab replication often insufficient to characterize site: most analyses from pits in plant interspaces

USER ACCESSIBILITY

- Relationship of results to system function can be readily explained
- Permits immediate interpretation and facilitates additional sampling when results unclear

Soil stability kit: design

Materials

2 18-cell "parts" or "tackle" boxes

18 sieves made from 1" PVC and alum. window screen

www.countgrass.com

Synergy Resource Solutions, Inc. 5393 Hamm Rd., Belgrade, MT 59714 406.586.GRASS Office, 406.388.9359 Fax

sales@countgrass.com

Soil sampling: location is critical

Soil stability kit: use

(1) Collect 6-8 mm-diameter sample from surface and 20-25mm depth (1 sample/sieve).

- (2) Immerse in dl water.
- (3) Record slaking in 1st 5 min.
- (4) Sieve 5x.
- (5) Rate sample on a scale from 1 to 6.

Criteria for assignment to stability class **Stability** (for Standard Characterization)^a class 50 % of structural integrity lost within 5 seconds of insertion in water. 50 % of structural integrity lost 5 - 30 seconds. 2 50 % of structural integrity lost 30 - 300 seconds 3 after insertion OR <10% of soil remains on sieve after 5 dipping cycles. 10 - 25% of soil remains after 5 dipping cycles. 4 5 25 - 75% of soil remains after 5 dipping cycles. 6 75 - 100% of soil remains after 5 dipping cycles.

Soil stability kit: interpretation

Soil erosion: high values indicate lower erodibility*.

Water infiltration: high values may be associated with higher infiltration rates.

Organic matter cycling: high values generally due to recently deposited organic matter produced by an active soil microbial community.

Stability class	Criteria for assignment to stability class (for Standard Characterization) ^a
0	Soil too unstable (falls through sieve) ^b .
1	50 % of structural integrity lost within 5 seconds of insertion in water.
2	50 % of structural integrity lost 5 - 30 seconds.
3	50 % of structural integrity lost 30 - 300 seconds after insertion OR <10% of soil remains on sieve after 5 dipping cycles.
4	10 - 25% of soil remains after 5 dipping cycles.
5	25 - 75% of soil remains after 5 dipping cycles.
6	75 - 100% of soil remains after 5 dipping cycles.

vs. *erosivity* which is the ability of wind, water or other factors to cause erosion

Soil stability kit: interpretation

- Quantitatively related to processes AND other measurements of these processes?
- ✓ Insensitive to single, acute disturbances?
- Sensitive to long-term changes?

Interpretation: quantitatively related to processes AND other measurements?

"... soil aggregate stability ... has been demonstrated to have a strong relationship with interrill erosion" (Blackburn & Pierson, 1994)

Interpretation: <u>insensitive</u> to single, acute disturbances?

<u>Strata</u>	Control	<u>Disturbed</u>
Control		
Bare	2.6	2.3
Grass	4.5	4.4
Bare/Grass	s 0.58	0.53

Post-disturbance data from gravelly-sandy loam site at the Jornada Experimental Range, New Mexico.

Interpretation: <u>sensitive</u> to longterm changes?

Summary of trampling effects

- Short-term: minimal
- ◆ Long-term: trampling reduces soil organic matter content and soil stability unless it significantly increases soil organic matter inputs
 - by incorporating litter and standing dead
 - by leading to a change in species composition

What about biological crusts?

- Nearly always increase stability test values
- Are nearly always more resistant to water erosion than physical crusts
- Provide approximately the same protection against wind erosion as physical crusts
 Exception: coarse sandy soils
- Can increase, decrease or have no effect on infiltration

Summary: stability kit

- Soil stability test may be used as part of an evaluation of erosion risk
- ◆ In order to use as an assessment tool, reference values must be established for the particular ecological site.
- This test should always be used in combination with vegetation measurements, and stratified by vegetative cover
- Additional research is required to test direct relationship with erosion and other properties and processes of interest

Soil Stability Kit Exercise

Soil stability kit: use

(1) Collect 6-8 mm-diameter sample from surface and 20-25mm depth (1 sample/sieve).

- (2) Immerse in dl water.
- (3) Record slaking in 1st 5 min.
- (4) Sieve 5x.
- (5) Rate sample on a scale from 1 to 6.

Stability Criteria for assignment to stability class (for Standard Characterization)^a class 50 % of structural integrity lost within 5 seconds of insertion in water. 50 % of structural integrity lost 5 - 30 seconds. 2 3 50 % of structural integrity lost 30 - 300 seconds after insertion OR <10% of soil remains on sieve after 5 dipping cycles. 4 10 - 25% of soil remains after 5 dipping cycles. 5 25 - 75% of soil remains after 5 dipping cycles. 6 75 - 100% of soil remains after 5 dipping cycles.